Advanced Heat Transfer: Heat Exchangers

Advanced Heat Transfer: Heat Exchangers
Log Mean Temperature Difference Method, Effectiveness NTU, Parallel Flow, Counter Flow, Shell and Tube, Cross Flow

Heat exchangers are devices that facilitate the exchange of heat between two fluids that are at different temperatures while keeping them from mixing with each other. Heat exchangers are commonly used in practice in a wide range of applications, from heating and air-conditioning systems in a household, to chemical processing and power production in large plants. Heat exchangers differ from mixing chambers in that they do not allow the two fluids involved to mix.

Heat transfer in a heat exchanger usually involves convection in each fluid and conduction through the wall separating the two fluids. In the analysis of heat exchangers, it is convenient to work with an overall heat transfer coefficient U that accounts for the contribution of all these effects on heat transfer. The rate of heat transfer between the two fluids at a location in a heat exchanger depends on the magnitude of the temperature difference at that location, which varies along the heat exchanger.

Heat exchangers are manufactured in a variety of types, and thus we start this course with the classification of heat exchangers: Parallel Flow, Counter Flow, Cross Flow and Shell and Tube heat exchangers. We then discuss the determination of the overall heat transfer coefficient in heat exchangers, and the log mean temperature difference (LMTD) for some configurations. We then introduce the correction factor F to account for the deviation of the mean temperature difference from the LMTD in complex configurations. Next we discuss the effectiveness–NTU method, which enables us to analyze heat exchangers when the outlet temperatures of the fluids are not known.

Enjoy and happy learning!!

100% OFF Limited Time

Udemy Coupon Code : Advanced Heat Transfer: Heat Exchangers | Udemy